City Gas Distribution Gas Flow & Measurement

Presented By -Ravikant Arya Additional General Manager (I&A)

Indraprastha Gas Limited

Introduction – City Gas Distribution Business Segments

City Gas Distribution Network

CITY GATE STATION(CGS)

It is inlet point of the pipeline from which natural gas enters in to the City Gas Distribution network

BASIC FUNCTIONS OF CGS

- a) REMOVAL OF CONDENSATE , DUST AND OIL FROM THE NATURAL GAS .
- b) MEASUREMENT OF SULPHER CONTENT IN THE GAS
- c) MEASURMENT OF HYDRCARBON DEW POINT
- d) MEASUREMENT OF MOISTURE IN THE GAS
- e) ANALYSIS OF NATURAL GAS.
- f) CONTROL OF PRESSURE OF NATURAL GAS SUPPLIED TO CONSUMER.
- g) MEASUREMENT OF THE NATURAL GAS SUPPLIED.
- h) FLOW CONTROL .
- i) SAFETY AGAINST HIGH PRESSURE

MAIN EQUIPMENTS IN CGS

- ISOLATION VALVES
- SCRUBBER
- FILTER SEPARATOR
- SULPHER CONTENT ANALYSER
- HYDROCARBON DEW POINT ANALY.
- MOISTURE DEW POINT ANALYSER
- GAS CHROMATOGRAPH
- GAS HEATER
- PRESSURE REDUCTION SKID
- PRESSURE SAFETY VALVES
- FLOW MEASUREMENT SYSTEM
- FLOW CONTROL SYSTEM

SCHEMATICS OF CITY GATE STATIONS

5

GAS MEASUREMENT SYSTEM CITY GATE STATIONS

FOUR TYPE OF GAS MEASUREMENT SYSTEM IS BEING USED

- 1. ORIFICE METERING.
- 2. TURBINE METERING
- 3. ULTRASONIC METERING
- 4. CORIOLIS METERING

FOR GAS ANALYSYS GAS CHROMATOGRAPHS ARE BEING USED.

Important parameters on gas metering

- Standards : ISO9951,OIML ,AGA
- Rangeability
- Accuracy, Uncertainty
- Linearity,
- Calibration
- Repeatability
- Legal metrology aspects
- Stability

Let's Start with Explaining a Few Key Definitions

Error	The different between a measurement and its true value.
K-factor	A number by which the meter's output pulses are multiplied to determine the flow volume through the meter.
Meter factor	A number by which the result of a measurement is multiplied to compensate for systematic error.
MAOP	Maximum allowable operating pressure
Pressure drop	The permanent loss of pressure across the meter
Qmax	The maximum gas flow rate through the meter that can be measured within the specified performance requirement.
Qmin	The minimum gas flow rate through the meter that can be measured within the specified performance requirement.
Rangeability	The ratio of the maximum to minimum flow rates over which the meter meets specified performance requirement. Rangeability is also known as the turndown ratio.

Accuracy

Repeatability

Poor Repeatability Means Poor Accuracy

Good Accuracy Means Good Repeatability

Good Repeatability Does Not Necessarily Mean Good Accuracy

ORIFICE METER

ORIFICE METER

Advantages & Disadvantages

ADVANTAGES	DISADVANTAGES	
Well documented in standards	Pulsating flow	
Industry acceptance	Low rangeability	
Low unit capital cost	High pressure loss	
No moving parts	Flow profile sensitive	
Dry calibration acceptable	Requires long meter tube/flow conditioner	
No limits on temp, pressure or size	Not self cleaning	
Mechanically robust	Can be damaged by high flow rates	

TURBINE METER

TURBINE METER

Advantages & Disadvantages

ADVANTAGES	DISADVANTAGES	
Good accuracy over linear flow range	Requires flow calibration	
Industry acceptance	Relatively high pressure loss	
Medium capital cost	Moving parts require maintenance	
Medium rangeability at high pressure	Cannot tolerate dirty processes	
Electronic output available	Possible damage due to over speeding	
Digital output, high repeatability		
Natural flow totaliser		

Impact of Dirt on Turbine Meter

Dirt accumulated on the rotor blades has a tendency to speed up a turbine meter, thus resulting in overestimated flow volume.

ULTRASONIC METER

International Standards

- AGA 9
- BS 7965:2000
- ISO/TC 30/SC 5/WG1 (Being Developed)
- AGA 10

ULTRASONIC METER

Advantages & Disadvantages

ADVANTAGES	DISADVANTAGES	
No flow calibration required	Not fully accepted by industry	
High accuracy	Susceptible to pressure reduction valve noise	
Sophisticated Self Diagnostic Capability		
Large rangeability		
No additional pressure drop		
No moving parts		
No maintenance		
Low operational cost		
Low installation cost-multipath units		

Coriolis Mass Flow Meter

Coriolis Meter

ADAVANTAGES	DISADVANTAGES
Mass flow	Potential erosion due to abrasive particles
Liquid calibration for gas use	High pressure loss may effect turn down ratio
Insensitive to flow distortions/profile	Sensitive to vibration close to operating freq.
Linear – good range	Sensitive to pulsations close to operating freq.
Accurate for BTU	Only available in small sizes
Flowing density – meter health diagnostic	
No wearing parts	
Elimination of T _f , P _f , and Z _f uncertainties	
Bi-directional	

FIELD REGULATING STATION(FRS)

It is inlet point of the pipeline system from which natural gas which is at 20 pressure in steel pipeline enters in MDPE pipeline network in which gas flowing at 4 bar pressure. Field Regulating stations are also known as District Regulating Stations(DRS)

BASIC FUNCTIONS OF FRS

- a) CONTROL & REGULATING OF GAS PRESSURE.
- c) MEASUREMENT OF THE NATURAL GAS
- d) SAFETY AGAINST HIGH PRESSURE.

GAS MEASUREMENT SYSTEM IN FRS

TWO TYPE OF GAS MEASUREMENT SYSTEM IS BEING USED

- 1. RPD METERING.
- 2. TURBINE METERING

MAIN EQUIPMENTS IN FRS

- ISOLATION VALVES
- SCRUBBER
- FILTER SEPARATOR
- PRESSURE REDUCTION SKID
- PRESSURE SAFETY VALVES
- FLOW MEASUREMENT SYSTEM
- REMOTE MONITERING, AUTOMATIC METER READING & EMEGENCY ALARM SYSTEMS

METERING & REGULATING SKIDS(MRS)

It is the custody transfer point where gas supply pressure is regulated as per the requirement of end user & gas flow measurement is done.

BASIC FUNCTIONS OF MRS

- a) CONTROL & REGULATING OF GAS PRESSURE.
- c) MEASUREMENT OF THE NATURAL GAS
- d) SAFETY AGAINST HIGH PRESSURE.

GAS MEASUREMENT SYSTEM IN MRS

THREE TYPE OF GAS MEASUREMENT SYSTEM IS BEING USED

- 1. RPD METER.
- 2. TURBINE METER
- 3. DIAPHRAGM METERS

MAIN EQUIPMENTS IN MRS

- ISOLATION VALVES
- FILTER SEPARATOR
- PRESSURE REGULATOR & NRV
- FLOW METER
- ELECTRONIC VOLUME CONVERTER
- AUTOMATIC METER READING SYSTEM

NEW DEVELOPMENTS

- PRE PAID GAS METERING.
- GPRS /LoRa BASED AMR SYSTEM
- THERMAL GAS METERING

CNG STATION COMPONENTS & GAS METERING

Why Use Coriolis Mass

- Volumetric flow metering is affected by changes in the temperature, pressure, density, viscosity, and flow profile of the process fluid.
- Coriolis flow metering provides direct mass measurement that is unaffected by changing fluid characteristics.

DOMESTIC GAS METERING

BASIC FUNCTIONS

- a) CONTROL & REGULATING OF GAS PRESSURE.
- b) MEASUREMENT OF THE NATURAL GAS

MAIN EQUIPMENTS IN MRS

- ISOLATION VALVES
- PRESSURE REGULATOR
- FLOW METER
- AUTOMATIC METER READING SYSTEM

GAS MEASUREMENT

• DIAPHRAGM METERS ARE USED IN DOMESTIC

NEW DEVELOPMENTS

- PRE PAID GAS METERING.
- LoRa BASED AMR SYSTEM

Standards:

1) BS EN 1359 :2006

2) OIML R31

AS PER OIML STANDARD

Gas Meter Designation G	Q max . M^{3/} h	Q min M^{3/} h
0.6	1	0.016
1	1.6	0.016
1.6	2.5	0.016
2.5	4	0.025
4	6	0.040
6	10	0.060
10	16	0.100
16	25	0.160
25	40	0.250
40	65	0.400
65	100	0.65

Flow Rate	MAX permissible Errors as per OIML Standard	
	On initial verification	In service
Qmin<= Qt< 0.1 Qmax	+/- 3%	-6% to +3%
0.1 Qmax < Qt < = Qmax	+/- 1.5%	+/-3%

THANKS